

Fig. 2. Stereoscopic view of the structure seen along [001] drawn by *PLUTO*.

Table 4. Hydrogen bonds (Å, °)

	D···A	D-H	HA	O−H··· <i>A</i>
O(1)-H(11)O(21)	3.228 (3)	0.90 (4)	2.67 (4)	122 (3)
$O(1) - H(11) \cdots O(21^{i})$	2.670 (3)	0.90 (3)	1.83 (4)	155 (4)
O(21)-H(21)···O(61 ⁱⁱ)	2.770 (3)	1.01 (4)	1.79 (4)	163 (4)
$O(61) - H(61) - O(1^{iii})$	2.801 (3)	1.00 (3)	1.81 (4)	171 (2)

Symmetry code: (i) 1-x, 1-y, 1-z; (ii) 1-x, 1-y, \overline{z} ; (iii) $\frac{1}{2}-x$, y, $z-\frac{1}{2}$.

Atom O(1) is a donor to atom O(21) of the same molecule and atom O(21) of a neighbouring one; the geometry around it suggests an asymmetric bifurcated hydrogen bond. Sheets of molecules are held together by van der Waals interactions.

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1966). NRC Crystallographic Programs for the IBM/360 System. National Research Council, Ottawa, Canada.
- BROCK, C. P. & HALLER, K. L. (1984). J. Phys. Chem. 88, 3570-3574.
- DOMENICANO, A., VACIAGO, A. & COULSON, C. A. (1975). Acta Cryst. B31, 221–234.
- MOTHERWELL, W. D. S. (1978). PLUTO78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- Oehler, D., Thozet, A. & Perrin, M. (1985). Acta Cryst. C41, 1766-1768.
- PERRIN, R., LAMARTINE, R., VICENS, J., PERRIN, M., THOZET, A., HANTON, D. & FUGIER, R. (1986). Nouv. J. Chim. 10(3), 179-190.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1986). C42, 1625–1627

Die Struktur von Trimesylhydroxylamin, (CH₃SO₂)₂NOSO₂CH₃*

VON KLAUS BRINK UND RAINER MATTES

Anorganisch-Chemisches Institut der Universität Münster, Corrensstraße 36, 4400 Münster, Bundesrepublik Deutschland

(Eingegangen am 29. Mai 1985; angenommen am 28. Juli 986)

Abstract. $C_3H_9NO_7S_3$, $M_r = 267.30$, monoclinic, $P2_1/c$, a = 12.81 (1), b = 7.550 (5), c = 10.251 (9) Å, $\beta = 92.68$ (7)°, V = 990.3 Å³, Z = 4, $D_m = 1.75$, D_x = 1.79 g cm⁻³, Mo Ka, $\lambda = 0.71069$ Å, $\mu = 7.4$ cm⁻¹, F(000) = 552, T = 120 K, R = 0.032 for 1922 independent observed reflections. The N atom is pyramidally coordinated. The N–S bond distances are 1.715 (2) and 1.753 (2) Å, respectively. Their difference can be attributed to different conformations of the CH₃SO₂ group with respect to the lone pair on the N atom.

Einleitung. Im Rahmen von Arbeiten zur Struktur und Reaktivität von Mesylhydroxylaminen (Brink & Mattes, 1986) sind wir besonders an den Strukturen vollständig mesylierter Stickstoffverbindungen interessiert, um zu prüfen, wie sich die Mesylierung auf die Koordination des Stickstoffs und auf die Länge der N-S-Bindung auswirkt. Aus diesem Grund haben wir bereits früher die Struktur von Tetramesylhydrazin

Strukturen der vollständig sulfonierten, ionischen Derivate des Ammoniaks und Hydroxylamins sind ebenfalls bekannt: $K_3[(SO_3)_3N].2H_2O$ (Tillack & Kennard, 1970), $K_3[(SO_3)_2NOSO_3].1,5H_2O$ (Brown & Strydom, 1977). Die analogen mesylierten Derivate des Ammoniaks bzw. Hydroxylamins (CH₃SO₂)₃N (Blaschette & Wieland, 1983) und (CH₃SO₂)₃N (Blaschette & Wieland, 1983) und (CH₃SO₂)₂-NOSO₂CH₃ (Boldhaus, Bliefert, Brink & Mattes, 1981) wurden vor kurzem synthetisiert. Wir berichten hier über die Struktur von Trimesylhydroxylamin.

aufgeklärt (Sucker, Bliefert, Brink & Mattes, 1983). Die

Experimentelles. Darstellung von Trimesylhydroxylamin nach Literaturangeben (Boldhaus, Bliefert, Brink & Mattes, 1981). Dichte mit Schwebemethode. Kristallgröße $0,3 \times 0,3 \times 0,5$ mm. Kristall in Lindemannkapillare; Syntex P2₁-Diffraktometer, Graphitmonochromator, Mo Ka-Strahlung. Gitterkonstanten aus 15 Reflexen (22 < 2 θ < 32°); empirische Absorptionskorrektur (ψ scan). 2347 Reflexe gemessen (2 θ_{max}

0108-2701/86/111625-03\$01.50

© 1986 International Union of Crystallography

S(1)

S(2)

S(3) 0(1)

0(2)

0(3)

O(4) O(5)

O(6)

O(7) N C(1)

C(2)

C(3) H(1)

H(2)

H(3)

H(4) H(5)

H(6)

H(7) H(8)

H(9)

 $= 54^{\circ}, 0 \le h \le 16, 0 \le k \le 9, -13 \le l \le 12$, davon 1922 unabhängige mit $I \ge 1.96 \sigma(I)$. 1 Standardreflex, Schwankung < 2,1%. Anwendung direkter Methoden und 'Kleinste Ouadrate'-Verfeinerung (163 Parameter) mit anisotropen Temperaturfaktoren außer H-Atomen: $\sum w |\Delta F|^2$ minimalisiert. Gewichtsschema $w^{-1} =$ $\sigma(F_{o}^{2}) + 0,0004F_{o}^{2}$. H-Atome aus Differenzsynthesen, isotrop verfeinert. R = 0,032; wR = 0,04; S = 1,79; $-0,40 \le \Delta \rho \le 0,33 \text{ e} \text{ Å}^{-3}.$ $(\Delta/\sigma)_{\rm max} = 0,2;$ Keine Extinktionskorrektur. Programme und Atomformfaktoren aus Syntex (1976) XTL/EXTL-Programmsystem.*

Diskussion. Tabelle 1 enthält die abschließenden Parameter, Tabelle 2 Bindungsabstände und -winkel. Die Struktur von Trimesylhydroxylamin (s. Fig. 1) reiht sich gut in die Strukturen der früher untersuchten Mesylhydroxylamine ein (Brink & Mattes, 1986). Auch hier ist, wie in allen neutralen und anionischen Sulfonsäurederivaten des Ammoniaks und Hydroxylamins, der N-S-Abstand im Vergleich zur Länge der N-S-Bindung von 1,7714 (3) Å in der Amidosulfonsäure (Bats, Coppens & Koetzle, 1977) stark verkürzt. Im Gegensatz zu (CH₃SO₂)₂NH mit planarer Koordination des Stickstoffs und einer N-S-Bindungslänge von 1,645 (1) Å (Attig & Mootz, 1975) ist das Stickstoffatom in Trimesylhydroxylamin pyramidal koordiniert. Dies ist, wie wir bereits beim N-Mesvlhydroxylamin und seinem O-Methyl-Derivat beobachtet haben (Brink & Mattes, 1986), auf den Einfluß des benachbarten Sauerstoffatoms zurückzuführen.

Es schwächt wegen seiner hohen Elektronegativität die Ausbildung von N-S- π -Bindungen. Insgesamt liegen ähnliche Verhältnisse vor wie in $K_3[(SO_3)_2]$ NOSO₃].1,5H₂O (Brown & Strydom, 1977). Die beiden N-S-Bindungen sind mit 1,753 (2) bzw. 1,715 (2) Å somit relativ lang. Sie sind infolge konformationsbedingter sterischer und elektronischer Effekte unterschiedlich lang. Auch die jeweils anliegenden Winkel unterscheiden sich. Die Konformation entlang der kürzeren Bindung S(3)-N ist wie in den Mesylhydroxylaminen CH₃SO₂N(H)OH und CH₃SO₃N-(H)OCH₃ (Brink & Mattes, 1986) gestaffelt, mit dem freien Elektronenpaar zwischen der SO₂-Gruppe. Im Gegensatz dazu ist die andere CH₃SO₂-Gruppe um ca 30° um die S(1)-N-Bindung aus der gestaffelten Stellung herausgedreht (s. Fig. 1). Die übrigen Bindungsparameter zeigen gegenüber anderen mesvlierten Hydroxylaminen (Brink & Mattes, 1986), Hydrazinen (Sucker, Bliefert, Brink & Mattes, 1983; Brink &

Tabelle 1. Orts- $(\times 10^3)$ und isotrope Temperaturparameter (Å²) von (CH₃SO₂)₂NOSO₂CH₃

$U_{\mathrm{\ddot{a}q}} = \frac{1}{24}\pi^2 \sum_l \sum_k B_{lk} a_l^* a_k^* (\mathbf{a}_l \cdot \mathbf{a}_k).$					
x	У	Z	$U_{\rm ag}/U_{\rm iso}$		
634,42 (3)	275,0 (1)	259,0(1)	0,0193		
882,52 (4)	149,5 (1)	122,8 (1)	0,0186		
737,50 (3)	588,5 (1)	139,9 (1)	0,0165		
603,1 (1)	404,7 (2)	349,9 (2)	0,0248		
675,3 (1)	110,9 (2)	306,0 (2)	0,0355		
832,5 (1)	302,4 (2)	216,3 (1)	0,0187		
956,7(1)	68,4 (2)	211,4 (2)	0,0296		
800,6 (1)	48,6 (2)	62,3 (2)	0,0309		
817,2 (1)	612,5 (2)	49,7 (2)	0,0239		
631,2 (1)	630,5 (2)	104,5 (2)	0,0238		
733,0 (1)	364,3 (2)	165,9 (2)	0,0173		
536,8 (2)	245,0 (4)	137,6 (3)	0,0346		
776,4 (2)	685,6 (3)	289,0 (2)	0,0234		
946,4 (2)	275,4 (4)	8,4 (3)	0,0309		
563 (3)	167 (5)	84 (4)	0,056		
484 (3)	196 (5)	185 (3)	0,058		
519 (3)	356 (5)	105 (3)	0,051		
844 (2)	645 (4)	302 (3)	0,038		
772 (2)	806 (4)	268 (3)	0,037		
732 (2)	649 (4)	355 (3)	0,042		
899 (2)	340 (4)	-41 (3)	0,029		
975 (3)	197 (5)	-39 (3)	0,056		
996 (3)	355 (5)	62 (3)	0,049		

Tabelle 2. Ausgewählte Bindungslängen (Å) und -winkel (°) in (CH₃SO₂),NOSO₂CH₃

1,753 (2)	S(1)-O(1)	1,423 (2)
1,715 (2)	S(1) - O(2)	1,421 (2)
1,430 (2)	S(2) - O(3)	1,649 (2)
	S(2)–O(4)	1,422 (2)
1,737 (3)	S(2)-O(5)	1,416 (2)
1,746 (2)	S(3)-O(6)	1,420 (2)
1,743 (3)	S(3)-O(7)	1,429 (2)
-,- (-,	- (-) - ()	-,,
119,3 (1)	O(3) - S(2) - O(4)	101.3 (1)
108,9 (1)	O(3) - S(2) - O(5)	109,3 (1)
110,1 (1)	O(3) - S(2) - C(3)	102,5 (1)
104,9 (1)	O(4) - S(2) - O(5)	120,5 (1)
111,8 (1)	O(4) - S(2) - C(3)	110,1 (1)
100.0 (1)	O(5) - S(2) - C(3)	111,1(1)
120.8 (1)	S(1) - N - S(3)	119,7 (1)
104,9 (1)	S(1) - N - O(3)	109,3 (1)
109,4 (1)	S(3) - N - O(3)	110,0 (1)
102,7 (1)		
111,0 (1)	N-O(3)-S(2)	112,5 (1)
106,8 (1)		
	1,753 (2) 1,715 (2) 1,430 (2) 1,737 (3) 1,746 (2) 1,743 (3) 119,3 (1) 108,9 (1) 110,1 (1) 104,9 (1) 104,9 (1) 104,9 (1) 109,4 (1) 109,4 (1) 109,4 (1) 109,4 (1) 100,6 (1)	$\begin{array}{ccccc} 1,753 (2) & S(1)-O(1) \\ 1,715 (2) & S(1)-O(2) \\ 1,430 (2) & S(2)-O(3) \\ & S(2)-O(4) \\ 1,737 (3) & S(2)-O(5) \\ 1,746 (2) & S(3)-O(6) \\ 1,743 (3) & S(3)-O(7) \\ \end{array}$

Trimesylhydroxylamin, (CH₃SO₂)₂-Fig. 1. Struktur von NOSO₂CH₃.

^{*} Die Liste der Strukturfaktoren und die Tabelle der anisotropen Temperaturfaktoren sind bei der British Library Document Supply Centre (Supplementary Publication No. SUP 43167: 6 pp.) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Tabelle 3. Bindungslängen (Å) und -winkel (°) am Stickstoff in einigen Methansulfonsäure- und Sulfonsäurederivaten des Ammoniaks und Hydroxylamins

			Winkelsumme
	$N-S^a$	N-O	am Stickstoff
CH ₃ SO ₂ N(H)OH ^b	1,664 (3)	1,437 (3)	320 (2)
(CH ₃ SO ₂) ₂ NOSO ₂ CH ₃ ^c	1,734 (2)	1,430 (2)	339,0 (1)
K SO ₃ N(H)OH	1,69 (1)	1,48 (2)	e
$K_{2}[SO_{3}N(H)OSO_{3}]^{\prime}$	1,704 (3)	1,454 (4)	304 (2)
K ₃ [(SO ₃) ₂ NOSO ₃].1,5H ₂ O ⁴	1,750 (2)	1,434 (1)	330,6 (1)
CH ₃ SO ₂ NH ₂ ^h	1,61 (2)		e
(CH ₃ SO ₂) ₂ NH.H ₂ O ^t	1,645 (1)		360
K[SO ₃ NH ₂] ^J	1,666 (6)		330,5 (5)
$K_2[(SO_3)_2NH]^k$	1,669 (2)		346 (3)
K ₃ [(SO ₃) ₃ N].2H ₂ O ⁴	1,71 (2)		360 (1)

Anmerkungen: (a) Mittelwerte; (b) Brink & Mattes (1986); (c) diese Arbeit; (d) Pant & Cruickshank (1966); (e) H-Atom(e) nicht lokalisiert; (f) Hall, Johnson, Kennard, Smith, Skelton & White (1980); (g) Brown & Strydom (1977); (h) Vorontsova (1966); (i) Attig & Mootz (1975); (j) Cox, Sabine, Padmanabhan, Ban, Chung & Surjadi (1967); (k) Barbier, Parent & Mairesse (1979); (l) Tillack & Kennard (1970).

Mattes, 1985) und Aminen (Vorontsova, 1966; Klug, 1968; Naumov, Garaeva & Butenko, 1979; Attig & Mootz, 1975) keine Besonderheiten.

Vergleicht man die Strukturen der Mesylhydroxylamine mit denen der Mesylamine und denen der Sulfonate des Ammoniaks und Hydroxylamins, so lassen sich folgende Gesetzmäßigkeiten erkennen (vgl. Tabelle 3): Wie bei den Sulfonaten des Ammoniaks und Hydroxylamins mit steigender Anzahl an Sulfonatgruppen führt auch bei den Mesylaminen und Mesylhydroxylaminen die zunehmende Substitution durch Mesylgruppen zu einer Verlängerung der N-S-Bindung und zu einer Verringerung der Pyramidalität am Stickstoffatom. Bei den Hydroxylaminderivaten geht die Verlängerung der N-S-Bindung mit einer Verkürzung der N–O-Bindung konform. Sulfonate des Ammoniaks und Hydroxylamins besitzen in der Regel längere N–S-Bindungen und eine größere Pyramidalität am Stickstoffatom als analoge Mesylamine bzw. Mesylhydroxylamine.

Literatur

- ATTIG, R. & MOOTZ, D. (1975). Acta Cryst. B31, 1212-1214.
- BARBIER, P., PARENT, Y. & MAIRESSE, G. (1979). Acta Cryst. B35, 1308-1312.
- BATS, J. W., COPPENS, P. & KOETZLE, T. F. (1977). Acta Cryst. B33, 37-45.
- BLASCHETTE, A. & WIELAND, E. (1983). Chem. Ztg, 107, 208.
- BOLDHAUS, M., BLIEFERT, C., BRINK, K. & MATTES, R. (1981). Z. Naturforsch. Teil B, 36, 1673–1674.
- BRINK, K. & MATTES, R. (1985). Chem. Ber. 118, 564-573.
- BRINK, K. & MATTES, R. (1986). Acta Cryst. C42, 319-322.
- BROWN, G. M. & STRYDOM, O. A. (1977). Acta Cryst. B33, 1591–1594.
- COX, G. W., SABINE, T. M., PADMANABHAN, V. M., BAN, N. T., CHUNG, M. K. & SURJADI, A. J. (1967). Acta Cryst. 23, 578-581.
- HALL, J. R., JOHNSON, R. A., KENNARD, C. H. L., SMITH, G., SKELTON, B. W. & WHITE, A. H. (1980). J. Chem. Soc. Dalton Trans. S. 2199–2207.
- KLUG, H. P. (1968). Acta Cryst. B24, 792-802.
- NAUMOV, V. A., GARAEVA, R. N. & BUTENKO, G. G. (1979). Zh. Strukt. Khim. 20, 1110–1113; J. Struct. Chem. 20, 946–949.
- PANT, A. K. & CRUICKSHANK, D. W. J. (1966). Acta Cryst. 21, 819–820.
- SUCKER, R., BLIEFERT, C., BRINK, K. & MATTES, R. (1983). Z. Anorg. Allg. Chem. 496, 75-79.
- Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California.
- TILLACK, J. V. & KENNARD, C. H. L. (1970). J. Chem. Soc. A, S. 1637–1640.
- VORONTSOVA, L. G. (1966). Zh. Strukt. Khim. 7, 280–283; J. Struct. Chem. 7, 275–277.

Acta Cryst. (1986). C42, 1627-1630

The Structure of 1,2-Bis(phenylsulfonyl)-1,1a,1b,2-tetrahydrodiaziridino[1,2-a:2,1-c]quinoxaline, an Aziridine Derivative

By BARBARA PNIEWSKA

Department of Chemistry, Agricultural and Teachers University in Siedlce, ul.3-Maja 54, 08-110 Siedlce, Poland

AND ROMANA ANULEWICZ*

Department of Chemistry, University of Warsaw, ul.Pasteura 1, 02-093 Warsaw, Poland

(Received 19 February 1986; accepted 23 May 1986)

atoms.

Abstract. $C_{22}H_{18}N_2O_4S_2$, M_r =438.6, monoclinic, $P2_1/c$, 1.32 (3), $D_x = 1.396$ g cm⁻³, Mo Ka, $\lambda = 0.71069$ Å, a = 13.380 (2), b = 17.319 (2), c = 9.173 (2) Å, $\mu = 2.39$ cm⁻¹, F(000) = 912, T = 293 K, R = 0.0513, $\beta = 101.14$ (2)°, V = 2085.59 Å³, Z = 4, $D_m = wR = 0.0415$ for 1893 observed reflections. The

* To whom correspondence should be addressed.

molecule exhibits approximate C_2 symmetry with non-equivalent deformations at sulfur and C-aziridinic